Primes.

Submission deadline: August $30^{\text {th }} 2020$
Find all positive integers a, b such that $a^{4}+4 b^{4}$, is prime.

The problem was solved by

- Cristian Baeza Miranda, Pontifical Catholic University, Chile.
- Anurag Ghosh, Sri Chaitanya Techno School, Marathahalli,India.
- Mümtaz Ulaş Keskin, Antalya, Türkiye.
- Shubhan Bhatia, NYU Abu Dhabi, UAE.
- Parv Bhadra, Grade 10, GEMS Modern Academy, Dubai, UAE.
- Vansh Agarwal, IB2, GEMS Modern Academy, Dubai, U.A.E.
- Yash Dave, IB2, GEMS Modern Academy, Dubai, UAE.
- Sherif Ismail, American University of Sharjah, UAE.
- Anya Bindra, Gems Modern Academy, Dubai, UAE.
- Sidharth Hariharan, IB2, GEMS Modern Academy, Dubai, UAE.
- Viduranga Landers.

Discussion
Clearly $a^{4}+4 b^{4}=\left(a^{2}+2 b^{2}\right)^{2}-4 a^{2} b^{2}$. Thus,

$$
a^{4}+4 b^{4}=\left(\left(a^{2}+2 b^{2}\right)-2 a b\right)\left(\left(a^{2}+2 b^{2}\right)+2 a b\right)
$$

For any two real numbers a and b, we have that $\left(a^{2}+b^{2}\right)-2 a b \geq 0$, and equality is attained only if $a=b$. Thus, for distinct natural numbers a and b, it is clear that $\left(a^{2}+b^{2}\right)-2 a b \geq 1$, and hence, $\left(a^{2}+2 b^{2}\right)-2 a b \geq 2$. If $a=b$, then $a^{4}+4 b^{4}=5 a^{4}$, therefore $a=1$ yields the only prime number. For any natural numbers a and b it is clear that $\left(a^{2}+2 b^{2}\right)+2 a b \geq 5$. Thus, $a^{4}+4 b^{4}$ is prime only when $a=1$ and $b=1$.

