Symmetry.

Submission deadline: October $30^{\text {th }} 2020$

Let F be a differentiable function on $[0,2020]$ such that $F^{\prime}(2020-x)=F^{\prime}(x)$ for all x in the domain. Evaluate

$$
\int_{0}^{2020} F(x) d x
$$

The problem was solved by

- Vansh Agarwal, IB2, GEMS Modern Academy, Dubai, UAE.
- Dilmini Mannaperuma, Hillwood College, Kandy, Sri Lanka.
- Sidharth Hariharan, IB2, GEMS Modern Academy, Dubai, UAE.
- Atakan Erdem, Ankara, Turkey.
- Merdangeldi Bayramov, Turkmen State University, Ashgabat, Turkmenistan.
- Cristian Baeza, Pontifical Catholic University, Chile.
- Mümtaz Ulaş Keskin, Antalya, Turkey.
- Yash Dave, IB2, GEMS Modern Academy, Dubai, UAE.

Discussion
Clearly,

$$
F(x)-F(0)=\int_{0}^{x} F^{\prime}(t) d t
$$

Therefore

$$
F(x)-F(0)=\int_{0}^{x} F^{\prime}(2020-t) d t
$$

By change of variables, $2020-t=u$, we get that

$$
F(x)-F(0)=-\int_{2020}^{2020-x} F^{\prime}(u) d u .
$$

Thus, $F(x)-F(0)=-(F(2020-x)-F(2020))$ which yields

$$
F(x)+F(2020-x)=F(2020)+F(0)
$$

Therefore,

$$
\int_{0}^{2020} F(x) d x+\int_{0}^{2020} F(2020-x) d x=2020(F(2020)+F(0))
$$

By change of variables in the second term of the left hand side above, it is easy to see that two terms on the left are equal to each other. Hence,

$$
\int_{0}^{2020} F(x) d x=2020 \frac{F(2020)+F(0)}{2}
$$

Note that $2 F(1010)=F(2020)+F(0)$.

Many solutions were variations of the one above. However, Dilmini Mannaperuma gave a more "geometrical" solution by taking symmetry into consideration. That solution clearly reveals why the answer looks like the area of a trapezoid.

