Derivatives.

Submission deadline: November $28^{\text {th }} 2020$

Let $p(x)$ be a monic polynomial of degree $m \geq 1$. Let D^{n} denote $\frac{d^{n}}{d x^{n}}$. Show that

$$
e^{p(x)} D^{n}\left(e^{-p(x)}\right)
$$

is a polynomial and find its degree. Find the ratio of the leading coefficient to the constant term.

The problem was solved by

- Hari Kishan, D.N College, Meerut, India.
- Mümtaz Ulaş Keskin, Antalya, Turkey.

Discussion
Below, we give some ideas and the interested reader can construct a rigorous proof using mathematical induction.

Let

$$
f_{k}(x)=e^{-p(x)} q_{k}(x)
$$

where k is an integer and $q_{k}(x)$ is a polynomial. Then, by differentiating once

$$
f_{k}^{\prime}(x)=e^{-p(x)}\left(q_{k}^{\prime}(x)-q_{k}(x) \cdot p^{\prime}(x)\right)
$$

Now let

$$
\begin{equation*}
q_{k+1}(x)=q_{k}^{\prime}(x)-q_{k}(x) \cdot p^{\prime}(x) . \tag{1}
\end{equation*}
$$

Then, it is easy to see that

$$
\begin{equation*}
\operatorname{deg}\left(q_{k+1}\right)=\operatorname{deg}\left(q_{k}\right)+(m-1) \tag{2}
\end{equation*}
$$

We may take $e^{-p(x)}=e^{-p(x)} q_{0}(x)$, where $q_{0}(x)=1$, hence $\operatorname{deg}\left(q_{0}\right)=0$. Now it is clear that $D^{n}\left(e^{-p(x)} q_{0}(x)\right)=e^{-p(x)} q_{n}(x)$, where $q_{n}(x)$ is a polynomial, and $e^{p(x)} D^{n}\left(e^{-p(x)}\right)=q_{n}(x)$. From (2) it is clear that $\operatorname{deg}\left(q_{n}(x)\right)=n \cdot(m-1)$. Thus, degree of $e^{p(x)} D^{n}\left(e^{-p(x)}\right)$ is

$$
n \cdot(m-1)
$$

If l_{k} denotes the leading coefficient of q_{k}, then from (1) it is clear that

$$
l_{k+1}=(-m) l_{k}
$$

and since $l_{0}=1$, it easily follows that l_{n} is $(-m)^{n}$.
For ceratin $p(x)$, the constant term could be 0 , thus it appears to be that the problem was too ambitious in trying to find the ratio.

