Fours, Eights and Nine.

Submission deadline: July $30^{\text {th }} 2020$
Show that each number of the sequence
49, 4489, 444889, 44448889, \cdots
is a perfect square.

The problem was solved by

- Sandaru Rubasinghe, Kingswood College, Kandy, Sri Lanka.
- Roger Bengtsson, Lund, Sweden.
- S.A.Arbith Ahamed, R/Sivali Central College.
- Berfin İnan, TOBB Bülent Koşmaz High School, Grade 12, Manisa, Turkey.
- Kalyan Sinha, Indian Institute of Technology, Dhanbad, INDIA.
- Shubhan Bhatia, NYU Abu Dhabi, UAE.
- Rohan Mitra, American University of Sharjah, UAE.
- Hari Kishan, D.N. College, Meerut, India.
- Parv Bhadra, Grade 10, GEMS Modern Academy, Dubai, UAE.
- Yash Dave, IB1, GEMS Modern Academy, Dubai, UAE.
- Viduranga Landers, D. S. Senanayake College, Sri Lanka.
- Vishweswar Eswaran, Grade 12, GEMS Modern Academy, Dubai, UAE.
- Sidharth Hariharan, IB1, GEMS Modern Academy, Dubai, UAE.
- Anya Bindra, IB1, GEMS modern academy, Dubai, UAE.

Discussion

The $n^{\text {th }}$ term of this sequence has the digit 4 in the first n places followed by 8 in the next $n-1$ places and 9 at the end.

Let $q=66 \cdots 6$, be the integer with $n+1$ digits and each equal to 6 . Thus $q=6\left(10^{n}+10^{n-1}+\cdots+1\right)$. It is easy to see that

$$
q=\frac{2}{3}\left(10^{n+1}-1\right)
$$

Therefore $q^{2}=4\left(10^{2(n+1)}-2 \cdot 10^{n+1}+1\right) / 9$. Now,

$$
q^{2}=\frac{4}{9}\left(\left(10^{2(n+1)}-1\right)-2\left(10^{n+1}-1\right)\right)
$$

Upon factoring further, we get

$$
q^{2}=4\left(\left(10^{2 n+1}+10^{2 n}+\cdots+1\right)-2\left(10^{n}+10^{n-1}+\cdots+1\right)\right)
$$

Now $q^{2}+2 q=4\left(10^{2 n+1}+10^{2 n}+\cdots+1\right)+4\left(10^{n}+10^{n-1}+\cdots+1\right)$. Thus, $q^{2}+2 q$ is the integer with the digit 4 in the first n places and 8 in the remaining places. Now it is easy to see that $(q+1)^{2}$ is the $n+1^{\text {th }}$ term in the sequence.

