
Fours, Eights and Nine.
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Show that each number of the sequence

49, 4489, 444889, 44448889, · · ·
is a perfect square.
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Discussion
The nth term of this sequence has the digit 4 in the first n places followed

by 8 in the next n− 1 places and 9 at the end.
Let q = 66 · · · 6, be the integer with n+ 1 digits and each equal to 6. Thus

q = 6(10n + 10n−1 + · · ·+ 1). It is easy to see that

q =
2

3
(10n+1 − 1).

Therefore q2 = 4(102(n+1) − 2 · 10n+1 + 1)/9. Now,

q2 =
4

9
((102(n+1) − 1)− 2(10n+1 − 1))

Upon factoring further, we get

q2 = 4((102n+1 + 102n + · · ·+ 1)− 2(10n + 10n−1 + · · ·+ 1))

Now q2 + 2q = 4(102n+1 + 102n + · · · + 1) + 4(10n + 10n−1 + · · · + 1). Thus,
q2+2q is the integer with the digit 4 in the first n places and 8 in the remaining
places. Now it is easy to see that (q + 1)2 is the n+ 1th term in the sequence.


