Tangents.

Submission deadline: December $30^{\text {th }} 2020$
Evaluate

$$
\sum_{r=0}^{n-2} 2^{r} \tan \left(\frac{\pi}{2^{n-r}}\right)
$$

The problem was solved by

- Hari Kishan, D.N College, Meerut, India.
- Mümtaz Ulaş Keskin, Antalya, Turkey.
- Merdangeldi Bayramov, Turkmen State University, Ashgabat, Turkmenistan.
- Anya Bindra, Gems Modern Academy, Dubai, UAE.

Discussion
Let

$$
\begin{equation*}
f(x)=\sum_{r=0}^{n-2} \ln \left(\cos \left(x 2^{r-n}\right)\right) \tag{1}
\end{equation*}
$$

Then

$$
f(x)=\ln \left(\cos \left(\frac{x}{2^{n}}\right) \cos \left(\frac{x}{2^{n-1}}\right) \cdots \cos \left(\frac{x}{2^{2}}\right)\right)
$$

It is known that

$$
\cos \left(\frac{x}{2^{n}}\right) \cos \left(\frac{x}{2^{n-1}}\right) \cdots \cos \left(\frac{x}{2^{2}}\right)=\frac{\sin \left(\frac{x}{2}\right)}{2^{n-1} \sin \left(\frac{x}{2^{n}}\right)}
$$

See the solution to October 2019 problem for the equation above. Now we have that

$$
f(x)=\ln \left(\sin \left(\frac{x}{2}\right)\right)-\ln \left(\sin \left(\frac{x}{2^{n}}\right)\right)-\ln \left(2^{n-1}\right)
$$

Thus

$$
f^{\prime}(x)=\frac{1}{2} \cot \left(\frac{x}{2}\right)-\frac{1}{2^{n}} \cot \left(\frac{x}{2^{n}}\right)
$$

From (1) it follows that

$$
f^{\prime}(x)=-\frac{1}{2^{n}} \sum_{r=0}^{n-2} 2^{r} \tan \left(\frac{x}{2^{n-r}}\right)
$$

Now by letting $x=\pi$, in the two equations above we get that

$$
\sum_{r=0}^{n-2} 2^{r} \tan \left(\frac{\pi}{2^{n-r}}\right)=\cot \left(\frac{\pi}{2^{n}}\right)
$$

All submitted solutions had a different solution using the identity $\tan (x)=$ $\cot (x)-2 \cot (2 x)$.

There is a very interesting geometrical interpretation as well.

