Three Equations

Submission deadline: April $29^{\text {th }} 2020$
Solve the following system of equations for x, y and z

$$
\begin{aligned}
& x^{2} y^{2}+x^{2} z^{2}=a x y z \\
& y^{2} z^{2}+y^{2} x^{2}=b x y z \\
& z^{2} x^{2}+z^{2} y^{2}=c x y z
\end{aligned}
$$

where, a, b and c are given constants.

The problem was solved by

- Shubhan Bhatia, Grade 12, GEMS Modern Academy, Dubai, UAE.
- Sidharth Hariharan, IB1, GEMS Modern Academy, Dubai, UAE.
- Vansh Agarwal, IB1, GEMS Modern Academy, Dubai, UAE.
- Emre Karabıyı, Hacettepe University, Faculty of Medicine, Ankara, Turkey.
- Hari Kishan, Department of Mathematics, D.N. College, Meerut, India.
- Anya Bindra.

Discussion:

$$
\begin{align*}
x^{2} y^{2}+x^{2} z^{2} & =a x y z \tag{1}\\
y^{2} z^{2}+y^{2} x^{2} & =b x y z \tag{2}\\
z^{2} x^{2}+z^{2} y^{2} & =c x y z \tag{3}
\end{align*}
$$

It is easy to see that if two of the variables are equal to 0 , and the remaining one takes any value, then x, y, z is a solution. Moreover, it is not possible to have a solution where one variable is zero and the other two are non-zero. Therefore we will find solutions assuming each variable is non-zero.

Since $x \neq 0$, from (1) we get that

$$
\begin{equation*}
x=a \frac{y z}{y^{2}+z^{2}} \tag{4}
\end{equation*}
$$

Substitute (4) in (2). Then, since $y z \neq 0$, we get

$$
\begin{equation*}
a^{2} z^{2}+\left(y^{2}+z^{2}\right)^{2}-c a\left(y^{2}+z^{2}\right)=0 \tag{5}
\end{equation*}
$$

Next Substitute (4) in (3). Then, we get

$$
\begin{equation*}
y^{2}+z^{2}=\frac{1}{2} a(b+c-a) \tag{6}
\end{equation*}
$$

Similarly we can get

$$
\begin{align*}
& z^{2}+x^{2}=\frac{1}{2} b(a+c-b) \tag{7}\\
& x^{2}+y^{2}=\frac{1}{2} c(a+b-c) \tag{8}
\end{align*}
$$

From (6) and (7) we get that $x^{2}-y^{2}=(a-b)(a+b-c) / 2$. Thus,

$$
x^{2}=\frac{1}{4}(a+b-c)(a+c-b)
$$

Values of y and z can be found by substituting x^{2} in (7) and (8).

