360

Submission deadline: June $29^{\text {th }} 2020$

Find all natural numbers n for which

$$
n^{2}\left(n^{2}-1\right)\left(n^{2}-4\right)
$$

is divisible by 360 .
The problem was solved by

- Yash Dave, IB1, GEMS Modern Academy, Dubai, UAE.
- Raghav Moar, Indian Institute of Technology, Madras, India
- Shubhan Bhatia, Grade 12, GEMS Modern Academy, Dubai, UAE.
- Sidharth Hariharan, IB1, GEMS Modern Academy, Dubai, UAE.
- Vansh Agarwal, IB1, GEMS Modern Academy, Dubai, UAE.
- Emre Karabıyık, Hacettepe University, Faculty of Medicine, Ankara, Turkey.
- Anya Bindra, IB1, GEMS Modern Academy, Dubai, UAE.
- Parv Bhadra, Grade 10, GEMS Modern Academy, Dubai, UAE.
- Mümtaz Ulaş Keskin, Antalya, Türkiye.
- Berfin İnan, Grade 11, TOBB Bülent Koşmaz Science High School, Manisa, Turkey.
- Rohan Mitra, American University of Sharjah, UAE.
- Vansh Agarwal, IB1, GEMS Modern Academy, Dubai, UAE.
- Ruben Victor Cohen, Argentina.
- Pankaj Chandra.

Discussion:
Let $s=n^{2}\left(n^{2}-1\right)\left(n^{2}-4\right)$. For $n=1$ or $n=2$, it is easy to see that 360 divides s. Assume that $n>2$.

Clearly,

$$
s=(n-2) \cdot(n-1) \cdot n \cdot n \cdot(n+1) \cdot(n+2)
$$

The prime factorization of 360 is $3^{2} \cdot 2^{3} \cdot 5$.
A group of 5 consecutive natural numbers contains a multiple of 5 , therefore 5 divides s.

A group of 3 consecutive natural numbers contains a multiple of 3 , and s is the product of two such groups. Thus, 3^{2} divides s.

If n is even then 2^{3} divides $n \cdot n \cdot(n+2)$.
If $n=2 k+1$, then $(n-1)(n+1)=2^{2} \cdot k \cdot(k+1)$. Hence 2^{3} divides $(n-1)(n+1)$.

Thus $5 \cdot 3^{2} \cdot 2^{3}$ divides s for all natural numbers.

Many solutions we received were variations of the solution above. However, Mr. Pankaj Chandra solved the problem by expressing the given term using ${ }^{n+3} C_{6}$ and ${ }^{n+2} C_{5}$.

