A Squared Divisor

Submission deadline: April $29^{\text {th }} 2020$
If n is an integer greater than 1 , then show that $n^{n-1}-1$ is divisible by $(n-1)^{2}$.

The problem was solved by

- Augusto Santi, Republic of San Marino.
- Shubhan Bhatia, Grade 12, GEMS Modern Academy, Dubai, UAE.
- Sidharth Hariharan, IB1, GEMS Modern Academy, Dubai, UAE.
- Vansh Agarwal, IB1, GEMS Modern Academy, Dubai, UAE.
- Yash Dave, IB1, GEMS Modern Academy, Dubai, UAE.
- Emre Karabıyık, Hacettepe University, Faculty of Medicine, Ankara, Turkey.
- Hari Kishan, Department of Mathematics, D.N. College, Meerut, India.
- Mohammed Kharroub, American University of Sharjah, Sharjah, UAE.
- Ruben Victor Cohen, Argentina.

NOTE. One of the solutions we received was valid only for odd integers.

Discussion:
The $n=2$ case is trivial. Assume that $n>2$.

$$
\begin{align*}
n^{n-1}-1 & =(n-1)\left(n^{n-2}+n^{n-3}+\cdots+n+1\right) \\
& =(n-1)\left(n^{n-2}-1+n^{n-3}-1+\cdots+n-1+n-1\right) \tag{1}
\end{align*}
$$

Since each $n^{k}-1$ where $k>1$, can be factored as $(n-1)\left(n^{k-1}+\cdots+1\right)$, it follows that $\left(n^{n-2}-1+n^{n-3}-1+\cdots+n-1+n-1\right)=(n-1) M$ for some integer M. Thus $n^{n-1}-1=(n-1)^{2} M$.

