## An Alternating Series

## Submission deadline: November $30^{\text {th }} 2018$

## Given that

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\cdots=\frac{\pi^{2}}{6}
$$

find

$$
1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{5^{2}}-\frac{1}{6^{2}}+\cdots
$$

The problem was solved by

- Ruben Victor Cohen, Argentina.
- Ryan Herbert, University of Wolverhampton, United Kingdom.
- Gagan.S, Class 10, Narayana CO Sindhu Bhavan School, India.
- Alfaisal A. Hasan, PSA, Sharjah, UAE.
- Dara Varam, American University of Sharjah, UAE.
- Ahmed Almaazmi, American University of Sharjah, UAE.
- Yahia Dalbah, American University of Sharjah, UAE.

Discussion:
It is known that

$$
\begin{equation*}
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\cdots=\frac{\pi^{2}}{6} \tag{1}
\end{equation*}
$$

Multiplying equation (1) by $1 / 2^{2}$ yields that

$$
\begin{equation*}
\frac{1}{2^{2}}+\frac{1}{(2 \cdot 2)^{2}}+\frac{1}{(2 \cdot 3)^{2}}+\frac{1}{(2 \cdot 4)^{2}}+\frac{1}{(2 \cdot 5)^{2}}+\frac{1}{(2 \cdot 6)^{2}}+\cdots=\frac{1}{2^{2}} \frac{\pi^{2}}{6} \tag{2}
\end{equation*}
$$

Now, subtracting two times equation (2) from equation (1) results in

$$
\begin{aligned}
1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{5^{2}}-\frac{1}{6^{2}}+\cdots & =\frac{\pi^{2}}{6}-\frac{1}{2} \frac{\pi^{2}}{6} \\
& =\frac{\pi^{2}}{12}
\end{aligned}
$$

Also see solution to February 2018 problem.

