Exponents, exponents, exponents

Submission deadline: March $31^{\text {st }} 2018$
Is the number

$$
1+2^{2019^{2020}}+3^{2019^{2020}}+\cdots+2018^{2019^{2020}}
$$

divisible by 2019 ?
The problem was solved by

- Kamel Samara, College of Medicine, Univeristy of Sharjah, UAE.

Discussion

Let $n=2019^{2020}$ and

$$
S=1+2^{n}+3^{n}+\cdots+2017^{n}+2018^{n}
$$

By rearranging the terms, it can be seen that

$$
S=\left(1+2018^{n}\right)+\left(2^{n}+2017^{n}\right)+\cdots+\left(1009^{n}+1010^{n}\right)
$$

It is easy to see that the general term takes the form $p^{n}+(2019-p)^{n}$ where $p=1,2, \cdots, 1009$.

Since 2019 is an odd integer, n is also an odd integer. Thus,
$p^{n}+(2019-p)^{n}=(p+(2019-p))\left(p^{n-1}-p^{n-2}(2019-p)+\cdots+(2019-p)^{n-1}\right)$.
Therefore $p^{n}+(2019-p)^{n}$ is divisible by 2019 for all p. Since S is the sum of such terms it easily follows that S is divisible by 2019.

Note The solution above uses the factorization

$$
a^{n}+b^{n}=(a+b)\left(a^{n-1}-a^{n-2} b+a^{n-3} b^{2}+\cdots+b^{n-1}\right)
$$

where n is odd. Instead, using the binomial theorem

$$
(2019-p)^{n}=2019^{n}-C_{1}^{n} 2019^{n-1} p+C_{2}^{n} 2019^{n-2} p^{2}+\cdots+C_{n-1}^{n} 2019 p^{n-1}+(-p)^{n} .
$$

Since n is odd
$p^{n}+(2019-p)^{n}=2019^{n}-C_{1}^{n} 2019^{n-1} p+C_{2}^{n} 2019^{n-2} p^{2}+\cdots+C_{n-1}^{n} 2019 p^{n-1}$.
Thus, $p^{n}+(2019-p)^{n}$ is divisible by 2019 .

