Sum of Odd Squares

Submission deadline: February $28^{\text {th }} 2018$

The Swiss mathematician Lenohard Euler in 1735 discovered that

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\cdots=\frac{\pi^{2}}{6}
$$

Can you find the value of the infinite series

$$
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\frac{1}{9^{2}}+\cdots ?
$$

The problem was solved by

- Zahriddin Muminov, Nilai University, Malaysia.
- Tasnim Zuhaili, Al Mawakeb School-Garhoud, UAE.
- Lina Ghonim, Al Mawakeb School-Garhoud, UAE.
- Kamel Samara, College of Medicine, Univeristy of Sharjah, UAE.
- Yousuf Abo Rahama, American University of Sharjah, UAE.
- Jafar Al-Shami, American University of Sharjah, UAE.
- Khaled Afifi, American University of Sharjah, UAE.
- Saood AlMarzooqi, American University of Sharjah, UAE.
- Shereen Farhana, American University of Sharjah, UAE.

Discussion

Multiply the equation

$$
\begin{equation*}
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\cdots=\frac{\pi^{2}}{6} \tag{1}
\end{equation*}
$$

by $1 / 2^{2}$. Then we have

$$
\begin{equation*}
\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\frac{1}{8^{2}}+\frac{1}{10^{2}}+\frac{1}{12^{2}}+\cdots=\frac{1}{2^{2}} \frac{\pi^{2}}{6} \tag{2}
\end{equation*}
$$

Next, subtract the equation (2) from equation (1). This yields,

$$
\begin{aligned}
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\frac{1}{9^{2}} \cdots & =\frac{\pi^{2}}{6}-\frac{1}{2^{2}} \frac{\pi^{2}}{6} \\
& =\frac{\pi^{2}}{8}
\end{aligned}
$$

The problem can also be solved by using Fourier series of certain functions.

