Four Roots

Submission deadline: April $30^{\text {th }} 2018$
Determine m so that the equation

$$
x^{4}-(3 m+2) x^{2}+m^{2}=0
$$

has 4 real roots in arithmetic progression.

The problem was solved by

- Mubeena T, Government College, Kasaragod, Kerala, India.
- Kamel Samara, College of Medicine, Univeristy of Sharjah, UAE.
- Khaled Fahmy Afifi, American Univeristy of Sharjah, UAE.
- Saif AlHammadi, American Univeristy of Sharjah, UAE.
- Issam Louchi, American Univeristy of Sharjah, UAE.

Solution

Clearly $x^{2}=\left((3 m+2) \pm \sqrt{5 m^{2}+12 m+4}\right) / 2$. Let $A=(3 m+2) / 2$ and $B=\sqrt{5 m^{2}+12 m+4} / 2$. Then the roots of the polynomial arranged as an increasing sequence is

$$
-\sqrt{A+B},-\sqrt{A-B}, \sqrt{A-B}, \sqrt{A+B}
$$

Since

$$
\sqrt{A+B}-\sqrt{A-B}=\sqrt{A-B}-(-\sqrt{A-B})
$$

we get

$$
9(A-B)=A+B
$$

Which yields

$$
4(3 m+2)=5 \sqrt{5 m^{2}+12 m+4}
$$

Squaring the equation above we get

$$
19 m^{2}-108 m-36=0
$$

which has the roots 6 and $-6 / 19$.
The root $m=6$ results in the arithmetic sequence

$$
-3 \sqrt{2},-\sqrt{2}, \sqrt{2}, 3 \sqrt{2}
$$

and $m=-6 / 19$ yields

$$
-3 \sqrt{\frac{2}{19}},-\sqrt{\frac{2}{19}}, \sqrt{\frac{2}{19}}, 3 \sqrt{\frac{2}{19}}
$$

